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COMPUTATION OF THE LONG RANGE MOTION 

OF A LUNAR SATELLITE 

Isabella J. Cole 

SUMMARY 

Formulae for long periodic perturbations depending on the argument 
of the pericenter are derived by the method of Harmonic Analysis and 
with Elliptic Integrals. 

An approximation of the terms of the Energy Integral that are de- 
pendent on the oblateness was used in the solution with Elliptic Integrals. 

V 



LIST OF SYMBOLS 

a = semimajor axis of the satellite's orbit = L2/p. 

b = mean radius of the moon (.1738 decamegametres) . 

e = eccentricity of the satellite's orbit = 
L2 

g = argument of pericenter of the satellite. 

h = longitude of the ascending node of the lunar satellite. 

H = G c o s i  

i = inclination of the satellite's orbit plane to the moon's equatorial plane = 

cos'l H/C 

J, = principal part of the oblateness of the moon (2.41 X 

3 
4 

K, = - J, b2 n2 

4 = mean anomaly of the lunar satellite. 

n = mean motion of the satellite = p2/L3. 

nc = mean motion of the  moon's mean anomaly = 2.2802713 x (radiudcentiday). 

n: = mean motion of the moon's mean longitude = 2.2997150 x (radians/centiday). 

vi 



E = ratio of the sum of the masses of the earth and the moon to the mass of the 
earth = 1.0123001. 

p = gravitational constant times the mass of the moon = 3.6601891 X (deca- 
megametres3 /centiday*) . 

H 
L 

&J=- 

vii 



COMPUTATION OF THE LONG RANGE MOTION 

OF A LUNAR SATELLITE 

INTRODUCTION 

In this paper formulae for dt/dt, dh/dt, 4 and h that were derived by: 

1. The method of Harmonic Analysis and 

2. With Elliptic Integrals 
are presented. 

To preserve the continuity of the presentation the formula for g ,  q2 and 
dg/d t from reference 1 a re  also given. In the solution with Elliptic Integrals 
formulae for dt/d t, dh/d t and d g /d t are presented from reference 3. 

THE HARMONIC ANALYSIS METHOD 

The Harmonic Analysis Method is presented for the computation of the long 
range motion of a Lunar Satellite. The procedure, as outlined below, is well 
adapted to high speed digital computers and attempts to  reduce the amount of 
labor involved in  the computation. 

a. Derivation of q2 as a Cosine Series 

The Hamiltonian, F is given by 

F = F, + F, i- F, 

where 

F, = n; H 

1 



I- . 

Author's 
Approximation 

F, = ~ K , L (  (5 - 3q2) (5- 1) ,. 

Binomial 
Expansion E r r o r  

One seeks now an approximation for 1 / q 3  (dependent on the value of e ' )  so 
that one has a quadratic in e2. The truncated binomial expansion of l/q3 !s 
(1 + (3/2)e2 + (15/8)e4). However, a better approximation for 1 /q3 is ( 1  + (3/2)e2 
+ 2 e4 ) . The following table compares this approximation, the actual value of 
1 /773 and the binomial expansion of 1 / q 3 .  This approximation was derived 
empirically and is accurate for  0 s e I .5. Figure 1 is a graph of these values. 
E r r o r  is defined as actual value/approximate value. 

. 2  

.3 

.4 

.5 

1.0631466 1.0632 .99994977 1.063 

1.1519614 1.1512 1.0006614 1.1501875 

1.29891 60 ' 1.2912 1.0059758 1.288 

1.5396007 1.5 1.0264005 1.492 

Erro r  

1 

1.0000022 

1.0001379 

1.0051420 

1.0084752 

1.031 9040 

If one approximates l /q3  by (1 + (3/2)e2 + 2e4)  and substitutes ( 1  - e,) for 
T~ then (neglecting powers of e greater than 4) one has: 

e4 {3K,L -K, (1 - 1 2  v2) - 15K,L ( 1  - v2) cos  2 g )  

+ e2 {(Y,L t K,) ( 9 v 2  - 1) + 15K,L (1  - v2) cos 2g t C )  

where C is the value of F, with initial conditions. 
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Figure 1-Comparison of l / ~ ~  With Some Approximations of l/q3 
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C = 6 I Y  6 (2 + 3eg) (3%- 1)  + 

In equation (2) let 2g take 5 values such that 0 5 2 g l  T ;  i.e. for example 0, 
~ / 4 ,  ~ / 2 ,  3 ~ / 4 , ~ .  One then has 5 quadratics in e 2 .  

Using the initial conditions of L,  G , H and the relationship v = H/L compute 
a ,  p ,  and y where 

a = coefficient of e4 term of equation (2) 

p = coefficient of e2 term of equation (2) 

y = coefficient of e 2  term of equation (2). 

Solve for q2 using the relationship 

and choosing the sign so that 0 5 T~ I 1. 

Assume that q2 can be represented as a cosine series 

i = n  

mi cos 2ig c i=O 

i.e. q2 = mo t ml cos  2g .+ m2 cos 4 g  t m3 c o s  6 g  

+ mq C O S  8 g  (for n = 4) .  

4 



Next, construct a 5 X 6 matrix of this shape 

70’ = mo t ml t m2 t m3 t m4 

q 2  = m + .5 ml - .5 m2 - m3 - .5 m4 
1 0  

4 = m o  - m2 + m4 

7; = mo - .5 ml - .5 m2 + m3 - .5 m4 

t m2 - m3 m4 7: = m o  - m l  

Solve for mo . . . m4 using these relationships. 

c- 

These values of mo . . . m4 are the coefficients of the cosine series that was 
assumed in equation (5). 

b. The Angular Variables 

Using the Delaunay set of canonical variables (L, G , H, 4 ,  g , h )  the equations 
of motion for the angular variables become: 

5 



r 
dg -3F - - - =  d t  - aG i K l ~  [ ( y - l ) + S  (l-:)cos2g] 

-- K2 ( l - ? ) ]  

L714 

It should be noted that there is the possibility that in certain instances 

so that dg/dt will be zero and dt/dg will be undefined. 

t- 
d 4  aF 
d t  

L3 

+ 3 K 1  v 2  - K, T~ - SK, (2 -+ v2) C O S  2g -+ ) 
-+ 5 K ,  T~ C O S  2g t 3K2v2 1 c o s  2g - -+ 10Kl v 2  -. 

715 T2 

5 K  H 

L 
5K1H c o s  2g 1 (-0s 2g 3K1 H 

c. g as a function of time, t . 
Using the values of 72 obtained from equation (2) compute from equation (8) 

d t  1 

d t  

- -  
dg  - d g -  

6 



Assume that dt/dg can be represented as a cosine series 

i=n 

pi cos 2 i g  c i=0 

i.e. 

d t  - = P, t P, COS 2g t p2 COS 4g t p3 COS 6 g  + P, COS 8 g  
d g  

Construct a matrix of the same shape and size as the one described as 
equations (6) under the section Derivation of ?* as a Cosine Series, i.e. let pi = 
mi and solve for po . . . p, using the relationships given in equation (7). 

Integrate d t /dg to get 

o r  

PZ p3 p4 

2 3 4 
p1 s i n  2g t- s i n  4g t- s i n  6 g  t- s i n  8g  

1 g =- t -- 
Po 2po 

Note that g has the holonomic shape, i.e. g can be expressed in terms of time 
and f (g) as g = + 6 f (g) where g is a function of time, t and 6 is a small 
constant = -1 /2p0. Equation (12), therefore, can be solved so as to express g 
in te rms  of 6 and g .  (It is assumed that E, f (g) and their derivatives are con- 
tinuous functions). Rewrite g as 

g = E  t q  s i n  2 g  + r s i n  4g t c s i n  6g  t d s i n  8g .  

with 

7 



Then 

g " E t  ( q t-t- : ) s i n 2 2  

t ( r  t t t i )  s i n 4 2  

t ( c  tTtF)  J M  s i n 6 g  

t ( d  t:t$) s i n 8 2  

where 

A = - 2(qr t r c  t cd)  

B = 2(q2 - 2qc - 2rd)  

J = 6q(r  - d) 

D = 4(2qc  + r2) 

8 



2 
E = 6  { -T -  q3 2 2 r2 c r q - c q - d2q -- - rcd t 

2 

.- 

N = - 48 (- rq2 t 2qrc t 2r2d t rc2 t 2q2d t d3 t 2dc2) 

d. dX/dt and dh/dt as Cosine Series 

Let g,(equation (13)) be such that 0 I Z S 7~ i.e. for example 0, ~ / 4 ,  d 2  , 
successively and compute g and cos 2g using equation (14). Assume 3n/4, 

that C O S  2g can be written as the s u m  of a cosine series 

to get 

. 

a cosine series. Compute 1 /q3 , 7' cos  2g, 1 /q5, 1 /q2, and cos (2g/q2) using the re- 
sults from equations (2) and (14). Assume that l/q3 , 1 /$, q2 cos 2g,  and 
COS (2g/T2) can be written as a cosine series. 

Solve for $o . . . 44 using the procedure described under - Derivation of q2 as 

For example: 

1 -=k, + k i  + k 2  + k 3  +k, 



1 -= k, 
<; - k2 + k, 

1 -= k, - .5k, - -5k2 t k, - .5k, 
4 

from which 

k3 = - 
6 3 

1 

7 2  

k4 =2- k, + k, 

- - 
cos 2g  

7, 
i = O  

i = n  c ifO 

c i -0  

i = n  

L~ cos  2ig 

ki c o s  2ig 

D cos 2ig i 

10 



i"n 

pi cos 2 i g  
1 

T5 i'0 

Now if one takes 

and 

1 -t h + 8 cos 2g 
J 

with 

A = - SKI (2 + v') 

I 3K2 v2 
C I -  L-.-- 

L 

11 



Y =  10 K, v2 

2 K 2 H  

L2 
r = -  

A =  ( T-"$ 3 K , H  

then 

i = n  
1 

t mi cos 2 i g + A  

i = O  i = O  

r 
i = O  i = O  

Substituting the series in  equations (1 8) and (1  9) yields the following expres- 
sions for dd /d t and dh/d  t 

12 
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3 

d4 - = W, t W, C O S  2g t W, COS 4g t W, COS 6g t W, COS 8g 
d t  

and 

- Vo t V, C O S  2g t V, COS 4g t V, COS 6g t V, cos 8g dh 
d t  
-- 

with 

W, =(@vi t r I ( m ,  -58,)  t A 4 0  t E p ,  t Y ( ( ,  - k l ) )  

W, = (an2 t fl (m, - 5 d 2 )  t 4, t B p2 + Y(  L , - k,)) 

e. Derivation of 4 and h 

8 and h are obtained by integrating equations (20) and (21) using these 
relationships 

d t  

13 



let 

then 

o r  

and 
- 

woo - WOP, 

- 
v o o  - VOPO 

THE SOLUTION WITH ELLIPTIC INTEGRALS 

- -. From equation (1) and the definition of the Delaunay variables one has 

_ - - - _ _  d? - 1 dC - 1 d F  - = - SK, (1 - 7') (1 - $) s i n  2 g  
d t  L d t  L ag 

and from equation (3) with H2/C2 = v ~ / ? ~  

14 



i 

1 -  

from which one finds 

- *K2 (1 -7) t (2 +3e') (1 -5) tKL C 

1 5 ( 1 - ? )  (1-5) q3 K,L 
(26) cos 2g  = 

Substituting this relationship in equation (24) and using 

sin 2 g  = * J1 - COS' 2g 

d77 - - - - _  - 277- dq2 - dq2 dq 
d t  dq d t  d t  

one has 

now letting q2 = (values of 7' for g = 0) = $ 

J 
and 

15 



when 1 / q 3  is approximated by ( 1  -t- (3/2)e2 + 2e4) and equation (29) is expanded 
(mglecting pmvers of e grezter thari 8) asing the relationships 

and 

then 

dq2 de2 A,e8 + A3e6  + A 2 e 4  + Ale2 + A ,  

d t  d t  3 (1 - e’) 

with 

A 3 = f 5 0 ( v 2 - l )  - 2 [(-4(1-3v2) ($ +I)  -$) ($) 

A, = { 225 (1  - v ~ ) ~  - { k ( 1 - 3 v 2 )  ($,+J) t$] [ $ ( 1 - 1 2 v 2 ) - 3  1 
+ ( 1 - 9 v 2 )  - + 1  -- [ (.:I ) GI)} 

A, = - 2 [2(1 - 3 v 2 )  ($ + 1) +$] [(1 - 9 ~ ’ )  ($ t I) -&] 

16 



Let e2 = y and using the binomial expansion of 

1 - = 1 t Y t Y 2 t Y 3 t Y 4  
1 - e2 

dy/dt becomes (neglecting powers of y greater than 4) 

A;y4 t A;y3 t A;y2 t A ~ Y  t A, dY 2Kl -=f- J 
d t  3 

with 

Equation (31) can be written as: 

-=f - /q  dY 2Kl 

dt  3 

and factored as 

where y,, y, , y, , y4 are the zeros of the quartic in equation (32) from which 

17 



with 

such that 

Y4 ’ Y3 ’ Y2 ’ Y, ’ Yo. 
let 

(Y4 - Y,> (Y3 - Y,> 

(Y4 - Y,> (Y3 - Y,> 
k2 = 

(Y4 - Y,> (Y, - Y> 

(y4 - Y,> (Y2 - Y> 
sn2 u = - 

and 

however one has 

with 



now let 

so 

and 

( s n u c n v d n v  f s n v c n u d n u )  
1 - k2 sn2u sn2 v 

Y = Y p -  (35) 

now 

or 

(36) s n u c n v d n v  i s n v c n u d n u  
1 - k2 sn2 u sn2 v 

? = 1 - y 2 t  

Once q2 is known, dg/dt, wdt and dx/dt can be integrated using q2 as the 
independent variable. For purposes of continuity with reference 3 one calls q2 = 
x then 

19 



where 

L J x  0 

dx 
G3 ( (1 - x) m 

Go = [f t 2 ( 1 - 3 u 2 )  KJ 

t 2 v 2  (3u2 - 5) K, G, = - 1-I;- c u2 

J 

G 2 = - [+ t 2 (1 t 3v2)  Kl] 

(1 - 3v2) K2 G, =- 
L 

20 



4 %  G, = - 
L u? 

(7  + 6 u 2 )  
-52 c, =- 

L 

9u2 K, 
L G, =- 

dx 

+ L4 r: (1 - x) 

with 

3L 

L, = - [' (* 3 6u2)  t q  3L 

K2 L = - -  3L (7 - 6 ~ ' )  
2 

7 u2 K2 
L 

L, = + 

2K, ( 1  - 372) 
L, = - 

3L 

21 



dx 

with 

H, = (-n', t 2 K, v) 

3 

where 

The integrals needed are of two types: 

I. Integrals involving m) 

for 

and 

dx 
1. c 

dx 

2. s (u2  - x) J w )  

see reference 5 page 102 # 251.39 

22 
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r d  
I d t  

with m = 1 

see #340.01 page 205 reference 5 

with 

a; = 

( a - c )  ( d - t )  
( a - d )  (c-  t )  

sn2 u = 

2 

/(a - c )  (b - d) 
g =  

a - d  
a - c  

a2 = -, = F (cp, k) 

23 



for 

dx 5. 

see reference 5 page 99 No. 251.04 

fd d t  - I,, t" / (a - t )  (h - t )  (c - t )  (d - t )  

2 I' (1 - a' sn2 u)" du 
d" (1 - a i  sn2 u)" 

with 

1 = a i  sn2 u 
t = d (  1 - a2 sn2 u ) 

with m = 1 

see #340.01 page 205 reference 5 

m = 1, 2, 3. 

- g [(ai - a2)  n(cp, ai, k) t a2 P] 
ai  d 



withm=2 

see #340.02 page 205 reference 5 

- g [u4 u t 2a2 (u; - a2) v, t (a; - a2)2 v2] 
a: d2 

where 

#336.01 page 201 reference 5 

Q; E(u) t (k2 - a:) u c 1 
2 (ai - 1)  (k2 - a;)  

v, = 

a: sn u cn u dn u 

1 - a: sn2 u 1 - 

f336.02 page 201 reference 5 

w i t h m = 3  

see #340.03 page 205 reference 5 

2 
a6u + 3u4 (“2’ - a2) v, t 3a2 (u; - 2) v, + (a; - 4 3  VJ “C a6 2 d3 

where 

F2 u -+ 2 fn?  E2 + a: - 3k2) V, g 

4 (1 - ai) (k2 - a;) d3 \ -<2 - v, = 

25 



a; sn u cn u dn 

( 1  - ai sn2 u) 2 I t 3 (u; - 2a2, k2 - 2a:  t 3k2) V, t 

#336.03 page 201 reference 5 ,  

II. Integrals involving v ' Z @ i j  

dx i(1 - x) ham 

10. J dx 

x2 hm3 

For these integrals one fits, by the method of least squares, a polynomial 
of degree 2 to the expression for x Q(x), (0  I x I x4). The procedure is 

1. Map 
z = x (x - XI) (x - x2) (x - x3) (x - x4) 

ir?to 

26 



a2 = 1 - x1 

a3 - 1 - x2 

a4 = 1 - x3 

- 

a5 1 - x4 

by using the transformation x = y + 1 with - 1 L y I - as 

2. Assign y values such that 

; 0 1  i 5 10. yi = (-1 t i (1 - e )  
10 

3. Compute the normal matrix 

11 a' Z y  b' Z y 2  c' Z Z  

Z y  a' Z y 2 b '  X y 3  c' .Ty Z 

y2 a' 2 y3 b' 1 y4 c' 2 y2 Z 

4. Solve this system for a', b' c'. These values are the coefficients of the 
approximating least squares polynomial 

a' t b' y t c' y2 

or  

with 

a t b x +  c x 2  

a = a' - b' t c' 

u - u  - 2 c '  

c = c' 

L. - L' 

27 



Set a + bx + c x 2  = X and one has that 

6 .  = C?X ClX 

for 6 and 7. 

U s e  #195, 196 of reference 6 page 27 

i f k i O  

o r  

or 

(2 k t P v  - 2 b' J k j z )  
V 

1 1 2 k t p v  
- -- t a n -  

V G  2b' m x  

- 1 1 2 k  t P v  __ sin-  
J-=i; b' v f i  

- 

28 



c 

v = (a' + b' x)  

p = bb' - 2 a' c 

k = a b t 2  - a 'bb '  t ce'* 

q =  4 a c - b 2  

i f k  = O  

for 8 see #160, I61 of reference 6 page 23 

i f c > O  

if  c = O  

i f c < O  dx - -1 2 c x + b  

1 2 c x t  b - sirlh-' 
J;i F 

d C  

for 9. See #182, 183 of reference G pages 25, 26. 

I f a > ( !  

29 



if a = O  

if a < O  

or  

2 ss= - -a  bx 

_ _  1 sinh-l ( 2a  t ~ bx ) 
Jz; 

for 10. See #186 of reference 6 page 26. 

An example of the fitting procedure is as follows: 

let 

x1 = .53  xg = . 23  

x2 = .31 x4 = . 12  

or 

a =  1 c = .69 

b = .47 d = . 7 7  

e = .88  

such that 

y = -1 ,  - .988 ,  - . 9 7 6  . . -.88 

and the normal matrix is 

Ila' -10.34b' 9 .73544~'  4.8922239 x 

-10. %a' 9.73544b' -9.1810928~' -4.6383256 x 

9.73544a' -9.1810928b' 8.672256%' 4.4007739 x 10- 

30 



w k s e  solution gives as t ~ e  approximate formula 

Z 2 (17f3.92728 -378.13508 y -199.80525 y 2 )  

Z 2 (.30355 121.474220 x-199.80525 z 2 )  lo-’ 

The original value of 2 and those obtained by substitution in the approximatinc. 
‘nrmula are plotted below. 

i 0 
0 . O r  x 

! 
X 

f 

C 
d 

X 

? 0 
I 

X APPROX I M A T I Y G  VALUES 
5 

i 

1 
0 

I 

X 

00 - ~ _ _  

1 I I 
i 

I I 
- c! 952 -0.928 - 0.904 - 0.880 - 1.090 - 0.976 

v 
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